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Abstract 

This article provides a justification for continuous measurements being more informative 

than pass/fail data. Namely, more information is provided for the same sample size or a 

smaller sample size is required for the same information. In the article, inference of the con- 

formance probability, the probability of measurements meeting specifications, is considered. 

It is shown that continuous measurements provide dramatic advantages, especially when the 

conformance probability is high. 

Key Words: lower confidence bound, probability of conformance, upper and lower specifica- 

tion limits, sample size. 

Introduction 

Recently two engineers asked me for advice in consecutive meetings about two aspects 

of the same problem. One engineer wanted a justification for requiring continuous measure- 

ments to be recorded, such as dimensions, rather than whether the measurements met speci- 

fications or not, so-called pass/fail data. The other engineer asked whether a smaller sample 

size could be justified for continuous measurements as compared with that for pass/fail 

data. Both engineers were interested in estimating the conformance probability, the proba- 

bility that a measurement meets specification, which is typically 0.90 or higher. This article 

describes such a justification. 
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Preliminaries 

Suppose that a continuous measurement has specification limits (4, U) and that the 

measurement follows a normal distribution with mean p and variance cr2, i.e., N ( p , a 2 ) .  

Then the conformance probability can be evaluated as: 

where @() is the normal cumulative distribution function. See Figures 1-3 which displays 

the normal density and the specification limits for conformance probabilities of 0.90, 0.99 

and 0,999, respectively. 

*** Figures 1-3 about here *** 

Let x = 2 1 , .  . . , 2, be a sample of n continuous measurements which are summarized by their 

sample mean and sample variance, z and s2, respectively. For pass/fail data, the continuous 

measurements are passed if they are within the specification limits and failed if not. Then 

the number of passed daha Y follows a binomial distribution with probability of success p 

and sample size n, i.e., Binornial(n,p). 

Now the goal is to provide inference on p ,  the conformance probability. For the pass/fail 

data, an r x 100 % lower confidence bound can be used whose formula is 

1/(1 + ( ( n  - Y + 1)F-l(r,2n - 2Y + 2,2Y) /Y)) ,  

where F-'(r ,df~,df;r)  is the r th  quantile of an F distribution with parameters df1 and df2. 

Values of r such as 0.50 and 0.90 provide an estimate and lower confidence bound on p ,  

respectively. 

For continuous measurements, since p in (1) is a function of ( p ,  a2),  a Bayesian approach 

provides a natural solution. Once the posterior distribution for ( p ,  a2) is obtained, as 

described below, the posterior distribution of p can be obtained by sampling from the ( p ,  cr2) 

posterior and evaluating p.  For inference, 0.50 and 0.10 quantiles of the posterior distribution 

of p provide an estimate and lower confidence bound on p ,  respectively. 

Further details of the Bayesian approach are as follows. Let 6 denote a vector of param- 

eters such as ( p , a 2 ) .  The Bayesian approach combines prior information about 6 with the 
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information about 0 contained in the data. The prior information is described by a proba- 

bility density .(e) known as the prior density and the information provided by the data is 

captured by the data sampling model f(xl6) known as the likelihood. The combined infor- 

mation is then described by another probability density ~(dlx)  called the posterior density, 

Bayes’ Theorem (Degroot (1)) provides the way to calculate the posterior density, namely, 

For the prior density, I used the normal-inverted gamma (N-IG) density, Le., 

o2 - IG(c, d) or l/a2 N Gamma(c, d),  

pla2 N N ( a ,  bo2). 

Since the continuous measurements are independent and normally distributed, the data 

sampling model or likelihood is the product of n N ( p ,  a2) densities evaluated at the values 

21,. . . ,xn. The N-IG prior is conjugate which means that the posterior has the same form, 

namely, 

d p  = d + ( n  - l)s2/2 t ( n / b ) ( ~  - ~ ) ~ / ( 2 ( ( l / b )  + n)). 
The form of the posterior also indicates how to sample from it; first draw a2 by taking 

the reciprocal of a Gamma random variable; then draw p by generating a normal random 

variable. 

A Comparison 

A study was performed for various conformance probabilities p (0.90, 0.95, 0.99, 0.999, 

0.9999, 0.99999) and sample sizes n (5, 10, 15, 20, 25, 50, 75, 100). For each case, 1000 

sets of continuous measurement samples were simulated and then their associated pass/fail 

3 



data were generated, For each sample, the 50% and 90% lower confidence bounds for p 

were calculated as described above for the pass/fail data and continuous measurements. 

The following prior density parameters were used: a=O.O, b=10000, c=O,Ol, d=0.01. The 

resulting density represents prior information that is very vague so that the Bayesian results 

reflect the information in the continuous measurements alone. 

The results are presented in Tables 1-4 which are the average 50% and 90% lower con- 

fidence bounds (over the 1000 sets), The results demonstrate a compelling reason for us- 

ing continuous measurements where possible. The continuous measurement estimates (50% 

lower confidence bounds) are closer to the true p’s. Also, the continuous measurement 90% 

lower confidence bounds which reflect the information in the are much closer to the true p’s; 

this is especially true for conformance probabilities near 1.0. 

Returning to the engineers’ questions which motivated this article, Tables 1-4 provide 

the following answers: 

0 Continuous measurements are more informative than pass/fail data. For a sample size 

n of 20 and conformance probability p of 0.90, the average 90% lower confidence bound 

for pass/fail data is 0.76205 as compared with 0.80347 for continuous measurements. 

A more dramatic example is for a sample size n of 25 and conformance probability p 

of 0.999 in which the average 90% lower confidence bound for pass/fail data is 0.91077 

as compared with 0.98963 for continuous measurements. 

A smaller sample size for continuous measurements provides the same information as 

that for pass/fail data with a larger sample size. For a conformance probability p of 

0.90, the average 90% lower confidence bound for pass/fail data based on a sample 

size n of 20 is 0.76205 as compared with 0.78580 (0.02 better) for continuous measure- 

ments based on a sample size n of 15. A more dramatic example is for a conformance 

probability p of 0.999 in which the average 90% lower confidence bound for pass/fail 

data based on a sample size n of 75 is 0.96822 as compared with 0.96729 for continuous 

measurements based on a sample size n of lo! 
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Table 1: Average 50% Lower Bound Using Pass/Fail Data 
sample size 

7 1 0  15 20 25 50 75 100 

0.90 

0.95 

0.99 

0.999 

0.9999 

0.99999 

0.87055 0.93303 0.95484 0.86853 0.89447 0.86750 0.92473 0.85381 

0.87055 0.93303 0.95484 0.96594 0.93377 0.94688 0.95126 0.94349 

0,87055 0.93303 0.95484 0.96594 0.89447 0.98623 0.99080 0.98327 

0.87055 0.93303 0.95484 0.96594 0.97265 0.98623 0.99080 0.99309 

0.87055 0.93303 0.95484 0.96594 0.97265 0.98623 0.99080 0.99309 

0.87055 0.93303 0.95484 0.96594 0.97265 0.98623 0.99080 0.99309 

P 

0.90 

0.95 

0.99 

0.999 

0.9999 

0,99999 

'able 2: Average 50% Lower Bound Using Continuous Measurements 
sample size 

5 10 15 20 25 50 75 100 

0.86595 0.88245 0.88818 0.88984 0.89130 0.89600 0.89620 0.89607 

0.91906 0.92993 0.93808 0.93931 0,94057 0.94571 0.94656 0.94707 

0.97033 0.97828 0.98277 0.98487 0.98528 0.98770 0.98840 0.98870 

0.99123 0.99491 0.99630 0.99706 0.99771 0.99836 0.99862 0.99870 

0.99741 0.99870 0.99923 0.99952 0.99958 0.99976 0.99979 0.99983 

0.99876 0.99957 0.99978 0.99988 0.99992 0.99996 0.99997 0.99998 
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P 

0.90 

0.95 

0.99 

0.999 

0.9999 

0.99999 

P 

0.90 

0.95 

0.99 

0.999 

0.9999 

0.99999 

Table 3: Average 90% Lower Bound Using Pass/Fail Data 
sample size 

5 I. 0 15 20 25 50 75 ’ 100 

sample size 

5 10 15 20 25 50 75 100 

0.66712 0.75178 0.78580 0.80347 0.81550 0.84543 0.85588 0.86162 

0.74909 0.82285 0.85645 0.87220 0.88208 0.90849 0.91734 0.92230 

0.85780 0.91623 0.94082 0.95281 0.95798 0.97219 0.97690 0.97922 

0.92724 0.96720 0.98010 0,98559 0.98963 0.99450 0.99609 0.99669 

0.96328 0.98682 0.99352 0,99609 0.99704 0.99882 0.99920 0.99943 

0.97550 0.99375 0.99730 0.99859 0.99912 0.99973 0.99984 0.99990 

0.52663 0.67239 0.73086 0.76205 0.77898 0.82497 0.84033 0.84944 

0.58013 0.72625 0.79137 0.82132 0.84050 0.88715 0.90075 0.90936 

0.62009 0.78220 0.84466 0.87911 0.89669 0.94043 0.95469 0.96294 

0.63053 0.79315 0.85564 0.88975 0.9107’7 0.95359 0.96822 0.97588 

0.63096 0.79393 0.85770 0.89111 0.91189 0.95493 0.96962 0.97711 

0.63096 0.79420 0.85770 0.891 18 0.91201 0.95499 0.96977 0.97724 
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Conclusions 

Intuitively, continuous measurements are more informative than pass/fail data. This 

article provides a justification, Namely, more information is provided for the same sam- 

ple size or a smaller sample size is required for the same information. There are dramatic 

advantages when the conformance probability is high. Consequently, continuous measure- 

ments are recommended where possible. Often, this may be as simple as requiring that 

continuous measurements be recorded rather than checking a box that the measurements 

met specifications. 
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